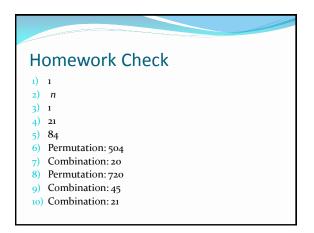
Tuesday, October 30, 2012

Reminder: If you have a signed quiz please have it out on your desk while you are working on your TISK problems.


TISK Problems:

- 1) Find the common difference: 21, 11, 5, 3, 5, 11, ...
- 2) Simplify: -8x + 4y (6x 3y)
- 3) Determine the probability that a fair six-sided spinner lands on a multiple of 4.

No Mental Math today.

Homewor

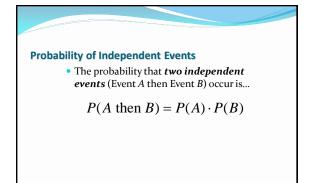
Independent & Dependent Events workshee

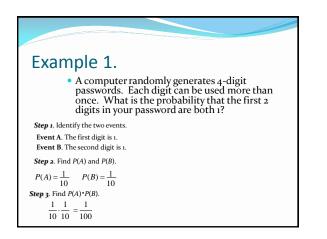
Independent & Dependent Events

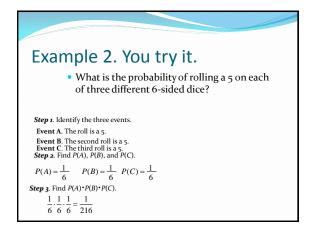
What does it mean to be independent?

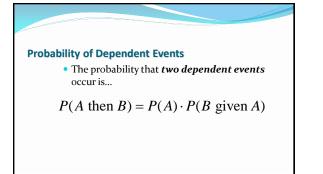
Two events are independent if the outcomes of one event have no effect on the outcomes of the other event.

• What does it mean to be dependent?

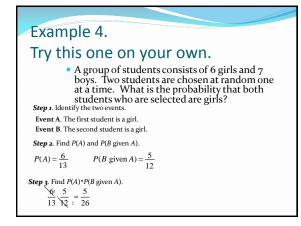

Two events are dependent if the outcomes of the first event change the outcomes of the second event.


• Give an example of two random events that would be independent. Event A: Rolling a 3 on a fair die. Event B: Spinning a 3 on a fair spinner.


• Can you think of 2 random events that would be dependent?


Event A: Picking a red card out of a deck of cards.

Event B: Without replacing the first, pick a second red card.



Example 3.	
Liample 5.	
 A jar of jelly beans contains 50 red jelly beans, 45 yellow jelly beans, and 30 green jelly beans. You reach into the jar and randomly select a jelly bean, then select another without putting the first jelly bean back. What is the probability that both jelly beans drawn are red? Step 1. Identify the two events. 	
Event A. The first jelly bean is red.	
Event B. The second jelly bean is red.	
Step 2 . Find <i>P</i> (<i>A</i>) and <i>P</i> (<i>B</i> given <i>A</i>).	
$P(A) = \frac{50}{125} = \frac{2}{5}$ $P(B \text{ given } A) = \frac{49}{124}$	
Step 3. Find $P(A) \cdot P(B \text{ given } A)$.	
× 49 49	
$\frac{1}{5}\frac{1}{124} = \frac{1}{310}$	

